Pemeliharaan prediktif pada stasiun pengamatan gempa bumi dan tsunami menjadi sangat penting sebagai kualitas kontrol atau pengendalian mutu. Saat ini penentuan kualitas stasiun pengamatan gempa bumi dan tsunami dilakukan secara pemeliharaan preventif dan pemeliharaan korektif dimana seorang pakar akan melakukan pemeliharaan secara berkala ataupun melakukan pemeliharaan apabila keadaan stasiun pengamatan gempa bumi dan tsunami mengalami kerusakan total. Pada penelitian ini pemeliharaan prediktif dilakukan pada seismometer dua stasiun yang berdekatan dengan menganalisis dalam domain frekuensi. Data yang digunakan adalah sinyal seismik pada rekaman seismometer tiga komponen (
North-South, East-West, Z-Vertical) pada jaringan stasiun pengamatan gempa bumi dan tsunami. Rancangan penelitian ini yaitu rekaman sinyal seismik pada dua stasiun diubah dalam domain frekuensi menjadi
power spectral density kemudian dilakukan
cross spectral density dan mendapatkan nilai koherensi dari
cross spectral density. Kemudian nilai tersebut menjadi
feature untuk
machine learning dan
label untuk
machine learning diberikan oleh pakar dari Badan Meteorologi Klimatologi dan Geofisika. Evaluasi dengan model
machine learning berbasis data koherensi
cross spectral density pada
fault detection seismometer berdasarkan
machine learning yang dipakai adalah
random forest dan
xgboost dengan memiliki akurasi 0,89 dan 0,91. Selain itu, waktu
training untuk permodelan
xgboost lebih cepat daripada
random forest.
Predictive maintenance of earthquake and tsunami observation stations is very important for quality control. Currently, the determination of the quality of earthquake and tsunami observation stations is carried out by preventive maintenance and corrective maintenance, where an expert will perform regular maintenance or perform maintenance if the earthquake and tsunami observation station is completely damaged. In this research, predictive maintenance is carried out on the seismometers of two adjacent stations by analyzing in the frequency domain. The data used are seismic signals in three-component seismometer recordings (North-South, East-West, Z-Vertical) in the earthquake and tsunami observation station network. The design of this research is that seismic signal recordings at two stations are converted in the frequency domain into power spectral density, then cross spectral density is carried out and the coherence value of the cross spectral density is obtained. Then the value becomes a feature for machine learning and the label for machine learning is given by experts from the Meteorology Climatology and Geophysics Agency. Evaluation with machine learning models based on cross spectral density coherence data on seismometer fault detection based on machine learning used is random forest and xgboost with an accuracy of 0.89 and 0.91. In addition, the training time for xgboost modeling is faster than random forest.